

red-y smart series operating instructions

Mass flow meter and controller, pressure controller red-y smart series

Part II: Digital Communication

Operating instructions red-y smart series

Part II: Digital Communication

red-y smart meter GSM red-y smart controller GSC red-y smart pressure controller GSP red-y smart back pressure controller GSB

This manual is valid for instruments with a serial number starting from 110 000

Version: smart_digi_com_E1_5

For the latest information on our products, see our website at **www.voegtlin.com** © 2012 Vögtlin Instruments AG, Switzerland

Copyright and Liability Disclaimer

All rights reserved. No part of this publication may be reproduced in any form or by any means without the publisher's prior written permission.

The content of this manual is provided for information only and may be altered without prior notice. Vögtlin Instruments AG assumes no responsibility or liability for any errors or inaccuracies in this manual.

This symbol alerts the user to important operating, maintenance and service information.

Important instructions

- Do not remove the red cover it prevents damage to the system
- There are no serviceable parts under the cover
- Removing the cover voids the warranty
- Repairs must only be performed by qualified personnel
- Connect the device to a protective ground conductor (earth)

Attention

This device must be grounded.

The supply voltage is 18..30 Vdc (typically ±50 mV).

Subject to change

Due to our policy of ongoing product development, we reserve the right to change the information in this manual without notice.

Content

1. Dig	ital Communication ModBus	5
1.10 D	Pesign of the ModBus RTU interface	5
1.11 D	Pata structure	g
1.12 L	UT-Data	10
1.13 P	ID-Data	11
1.14 P	arameter overview	11
1.15 D	Detailed explanation	15
1.16 D	Different Memories	34
1.17 C	Controller characteristic	35
1.18 C	Controller setting	36
2. Dig	ital Communication ProfiBus	37
2.10 D	Definition of address and data slot	38
2.11 R	Register	39
3. Pre	essure controller GSP/GSB / ModBus	42
3.10 N	lumber formats	42
3.11 P	arameter overview	42
3.12 D	Detailed explanation of individual parameters	44
4. Pre	essure Controller GSP/GSB / ProfiBus	49
4.10 R	Register	49
5. Cha	ange history	51

1. Digital Communication ModBus

The digital communication with a red-y mass flow meter or controller offers the following advantages:

More information

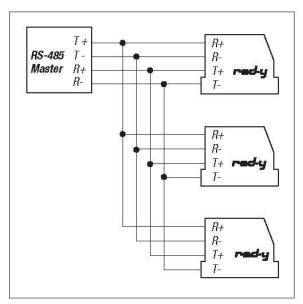
Besides the flow values you can read out the parameters like the gas temperature, total flow, alarm status, serial number etc.

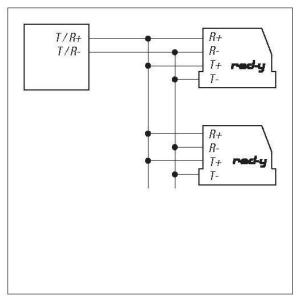
• Access to device functions

Allowing you to adapt the controller behavior and various settings.

Plug and Play

With the cable modules and the free software Get red-y, the instruments can directly be connected to PC (USB) and are ready for use.


1.10 Design of the ModBus RTU interface


Red-y mass flow meters and controllers work on a serial communication RS-485 with a protocol ModBus RTU. A 2 or 4 wire connection is possible.

N

Note

To use the function ,Firmware update' it is necessary to use a 4-wire connection. The communication in this case will be full-duplex with Baudrate up to 57600 Bit/s.

4-wire communication (full duplex)

2-wire communication (half duplex)

Each red-y must be set to an individual address between 1 and 246 in order to communicate properly with your PC. With the free software 'get red-y' you can check the bus, read and if necessary change the address of an instrument.

Note: When delivered from factory, all instruments have the address No. 247. Please connect and install every single instrument individually one after the other and apply the required address. A bus system does not recognize if two instruments have the same address in the bus. In this case, the Get red-y software shows invalid figures in the list of the instruments.

Interface cable

With the interface cable ,PDM-U' You are able to connect the devices to an USB port This item is also available from your red-y sales partner.

Communication parameters

red-y works on the following communication parameter:

Communication speed: 9600 Baud

Start bit: 1
Data bits: 8
Stop bits: 2
Parity: none
input buffer: 300 Bytes

Note:

There are master systems that are only able to generate 1 stop bit. In this case the second stop bit can be replaced by ,mark parity'.

ModBus RTU

The ModBus protocol is a communication structure for a master-slave communication between intelligent instruments. It is used world wide and supported by most manufacturers of measurement and control instruments. Orginally it was introduced by MODICON. For further informations see www.modbus.org.

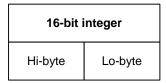
Protocol

A ModBus message from master to slave consists of: Address, command (read or write), data and checksum (CRC). The following picture shows the structure of a complete command:

ADRESS	FUNCTION	DATA	CRC
1 Byte	1 Byte	0252 Bytes	2 Bytes

The length of a command is limited to 256 bytes.

• ADRESS

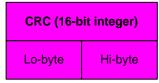

The ModBus adress of a device. Valid addresses are in the range of: 1..247 A broadcast to all devices goes to adress 0 => no answer from the instruments

FUNCTION

Function 03: Read holding register
Function 06: Preset single register
Function 16: Preset multiple registers

DATA

This section holds information about address and data. Data types with several bytes, are transmitted as follows:



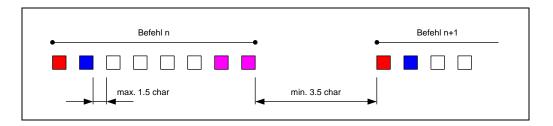
32-bit integer				
Hi-word		Lo-v	vord	
Hi-byte	Lo-byte	Hi-byte	Lo-byte	

32-bit float			
Hi-word		Lo-v	vord
Hi-byte	Lo-byte	Hi-byte	Lo-byte

CRC

The chechsum is built over the whole command (excl. CRC).

Note:


Note:

The CRC-bytes are transmitted in lo-hi-order (opposite order!).

Timing

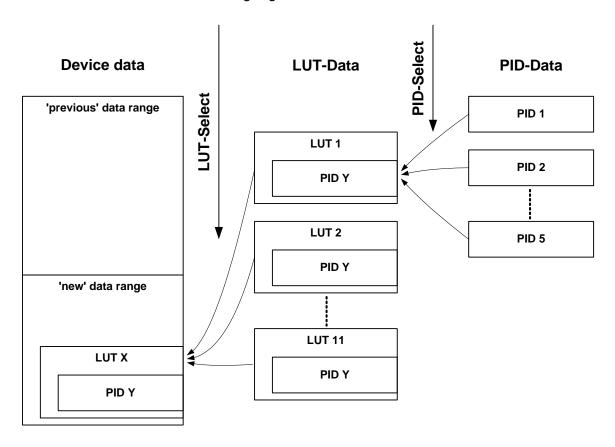
Between two commands must be a pause of at least 3.5 characters. At a baud rate of 9600, this corresponds with a pause time of 4ms.

Within an instruction the characters may have a maximum distance of 1.5 characters. With a bit rate of 9600 Baud this corresponds to a time of approx. 1.7ms

Data types

Data type	Format	Description	Length [Bytes]
float32	f32	floating point, according to IEEE-754	4
string8	s8	sequence of symbols, null-terminated	8
string50	s50	sequence of symbols, null-terminated	50
uint8	u8	unsigned integer, 8 bits	1
uint16	u16	unsigned integer, 16 bits	2
uint32	u32	unsigned integer, 32 bits	4

Parameters


Numerous parameters can be read and written via the digital communication. They enable operation (actual and set value) and also device parameterization (gas type, measuring point ID, ...). Additional parameters are integrated that are only accessible with associated permission and are therefore not documented in detail in this handbook.

The example below illustrates the potential configuration of a parameter.

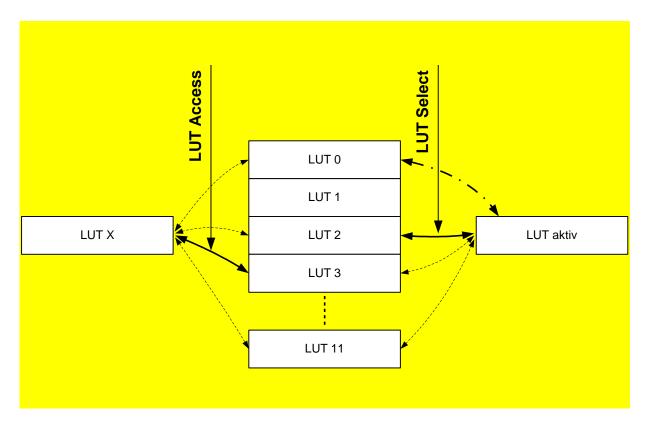
Name of parameter	register address	write	access level			
Name of parameter		read	access level			
Description of parameter						
Data format						

1.11 Data structure

The data structure has the following organization:

,Previous' data area

Compatibility with existing devices was a key issue. Many registers are accessible via identical addresses. Some registers were removed or moved into the ,new' data area.


,New' data area

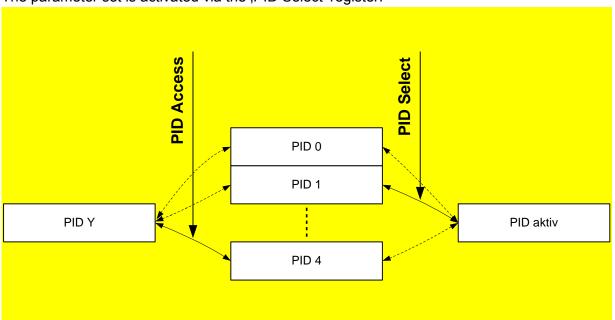
This is where new device functions are stored. In addition the number of selectable gas types was extended to 10. All data that depend on the gas type were moved to the LUT area (e.g. totalizer, sensor amplification, ...)

1.12 LUT-Data

The LUT data area contains all data that depend on the gas type. This is available 11 times on the device, although only areas 2..11 are accessible for the user.

The active gas type is selected via the ,LUT Select' register.

A data pointer can be set via the ,LUT Access' register. It enables data to be read from or written to any LUT data area. Data access can be realized independent of the active LUT.


Remark:

If the data pointer ,LUT Access' is set to 0, data access is always redirected automatically to the active LUT.

1.13 PID-Data

For every gas type (LUT) 5 different data records are available for control adjustments.

The parameter set is activated via the ,PID Select' register.

A data pointer can be set via the ,PID Access' register. It enables data to be read from or written to any PID data area. Data access can be realized independent of the active PID data record.

1.14 Parameter overview

The following parameter description is valid for the devices SMART4 or higher. The description for the devices with Sno < 160000 use the document smart_digit_com V1.4 or 1.3.

Name	Description	Register	ModBus
Gas flow	Measured value of gas	0x00000x0001	0000
	flow		
Temperature	Measured value of temperature	0x00020x0003	0002
Totaliser	Total gas flow	0x00040x0005	0004
Setpoint gas flow	Control setpoint of gas	0x00060x0007	0006
	flow		
Analog input	Measured value of ana-	0x00080x0009	8000
	log input		
Valve control signal	Actual value of the valve	0x000a0x000b	000a
	control		
Alarms	Alarm status	0x000c	000c
Hardware errors	Indicator for possible malfunction	0x000d	000d
Control function	Selection of the control-	0x000e	000e
	ler mode		
Ramp (V 5.x)	Reducing the control speed	0x000F	000F

Name	Description	Register	ModBus
Device adress	ModBus device adress	0x0013	0013
Bezeichnung Medium	Zeichenkette des Messmediums	0x 00 1a	001a
		0 x0 01 d	
Seriennummer Hard- ware	Produktionsnummer Elektronik	0x001e0x001f	001e
Versionsnummer Hard- ware	Entwicklungsstufe Elektronik	0x0020	0020
Version number soft- ware	Development stage of the software (firmware)	0x0021	0021
Save setpoint immediate	Save setpoint value im- mediate to EEPROM	0x0022	0022
Type code 1	Device type description (part 1)	0x00230x0026	0023
Analog output manual	Manual setting of the analog output	0x00280x0029	0028
Soft reset	Restarts the device	0x0034	0034
PID Select	Selection of control pa- rameter set	0x0035	0035
Flow-Pressure (V 6.0.12)	function to switch direct from flow to pressure and vice versa	0x0038	0038
Save mode setpoint	Save mode of setpoint value	0x4050	4050
Reverse flow detection	Threshold for detection	0x40520x4053	4052
Signal type analog output	Signal type of the ana- log output	0x4084	4084
Signale type analog input	Signal type of the ana- log input	0x4085	4085
Delay hardware error	Delay time for the plau- sibility check at a hard- ware error	0x4087	4087
LUT Select	Selection of gas table	0x4139	4139
Name of the Metering point	Name only, no function	0x5000	5000
LED Blinkmodus On Off. (V 6.0.12)	The blinking LED Alarm can be switched off, the alarm is still available on the interface	0x5204	5204

Name	Description		Register	ModBus
Voltage output activ		Switch the analog output signal between current and voltage range	0x5500	5500
Voltage input activ		Switch the analog input signal between current and voltage range	0x5504	5504
Custom- er specif- ic current input low		Low value for customer specific current input signal	0x5505	5505
Custom- er specif- ic current input high		High value for customer specific current input signal	0x5507	5507
Custom- er specif- ic voltage input low		Low value for customer specific voltage input signal	0x5509	5509
Custom- er specif- ic voltage input high		High value for customer specific voltage input signal	0x550B	550B
Custom- er specif- ic current output low		Low value for customer specific current output	0x550D	550D
Custom- er specif- ic current output high		High Value for customer specific current output	0x550F	550F
Custom- er specif- ic voltage output low		Low value for customer specific voltage output	0x5511	5511

Name	Description	Register	ModBus
Custom- er specif- ic voltage output high	High value for customer specific voltage output	0x5513	5513
PID Access	Data access pointer to control parameter set	0x5FF7	5FF7
LUT Access	Data access pointer to gas table	0x5FFF	5FFF
LUT ID	Identifier gas table	0x60000x6001	6000
Measuring range	Calibrated measuring range (flow)	0x60200x6021	6020
Name of fluid (long)	Name of the measured gas (long name)	0x60220x603A	6022
Name of fluid	Name of the measured gas	0x60420x6045	6042
Measuring unit	Engineering unit of mesured value	0x60460x6049	6046
Gain	Gain of sensor	0x6120	6120
Heat power	Heat power of sensor	0x6121	6121
Dynamic	Dynamic of measuring range	0x6122	6122
Cutoff	Zero point suppression	0x61230x6124	6123
Control parameter K _D	Control parameter differential	0x62020x6203	6202
Control parameter K _P	Control parameter differential	0x62040x6205	6204
Control parameter K _I	Control parameter integral	0x62060x6207	6206
Control parameter N	Control parameter non- linearity valve	0x6208	6208
Totaliser 1	Total gas flow (resettable)	0x63800x6381	
Totaliser 2	Total gas flow (not reset- table)	0x63820x6383	6382
Totaliser scaling factor	Scaling factor of the to- taliser	0x63840x6385	6384
Totaliser unit	Engineering unit of the totaliser	0x63860x6389	6386
Analogfilter at Setpoint	Filter upstreaming to analog output	0x5515	5515
ProfiKeepLastValue	Properties when communication fails	0x5943	5943
ProfiSetDefault	Properties when ProfiKeepLastValue	0x59440x5945	5944

1.15 Detailed explanation

Gas flow	0x00000x0001	write	no access		
Gas now	0x00000x0001	read	user		
Measured value gas flow.					
value f32					

Temperature	0×0002 0×0003	write	no access
remperature	0.00002000005	read	user

Measured value temperature [°C].

Note:

Due to self-heating this temperature may be slightly higher range than the effective gas temperature at the device inlet.

value f32

Setpoint gas flow	0~0006 0~0007	write	user
	0x00000x0007	read	user

Setpoint of the controller.

To activate the setpoint, the controller mode (register 0x000e) has to be in mode 0 (automatic) or in mode 1 (ModBus).

The controller operates only with this setpoint if the power-up alarm (register 0x4040) is not active.

In this case the value is stored in the non-volatile memory and is still present after a power loss. With the power-up alarm activated the setpoint will be lost at a power loss.

value f32

Analog input	0x00080x0009	write no access	no access	
Analog input	0.00000000009	read	user	

Analog setpoint input for the controller. Manufacturer configuration as voltage [V] or current [mA]. The converted input value is always loaded into the register, whether the controller works in analog or digital mode.

value f32

Valve control signal	0x000a0x000b	write	user user	•
	read	read	user	

Contains the actual control value for the valve whether the control value is generated from the controller (automatic mode) or manually set via ModBus. If the register control mode (0x000e) is defined as mode 10 the control value is immediately loaded into the register. In any other modes the value is stored in a buffer and becomes active when control mode 10 has been activated. It is possible to adjust directly the position of the control valve [0...100%].

value f32

Narms 0x000c	0×000c	write	no access	
Alaims	020000	read	user	

Indicates the alarm messages in a bit map. The bit pattern depends on the status of the instrument and the detected alarms. If an alarm condition is no longer valid the corresponding bit is automatically erased.

value **u16** (bits 15...0)

Bit#	Description
0	Indicates a negative flow (flow value < 0)
1	Indicates a negative flow exceeding the backflow setpoint. The bit remains set until a positive flow is detected.
214	not used
15	Indicates a hardware error (register 0x000d). This bit is therefore an OR-function of all hardware errors.

Hardware errors	re errors 0x000d	write	no access
Haluwale ellois	0X000a	read	user

Indicates eventual malfunctions during operation of the instrument. This Information persists even the problem has been solved and has to be reset with the parameter 'Reset hardware error' $(0 \times 404 \, f)$.

All alarm messages are reset if the instrument is switched off and activated again at power on if an alarm persists.

value **u16** (bits 15...0)

The following table explains the individual error bits:

Bit#	Description
0	Power-up alarm
	If the instrument is switched off with activated Power-up alarm and switched on
	again, then the active setpoint will be the readjusted power-up setpoint. (see pa-
	rameter power-up alarm setpoint). This status will only be checked at power-up.
1	Alarm analog setpoint
	Raised if the analog setpoint is outside the valid range (21.6mA, 10.8V).
	This alarm is only active if the instrument is a flow controller.
2	Zero point or leakage alarm
	Raised If at a valve control signal of 0% (Valve electrically closed) a flow is meas-
	ured. Possible causes are: An incompletely closed valve, internal leakage or a zero
	drift. This alarm is only active if the instrument is a flow controller.
3	No gas / jammed valve alarm
	Raised if at a valve control signal of 100% (valve electrically fully open) no gas flow
	is measured. This alarm is only active if the instrument is a flow controller.
4	No reaction
	Raised if the valve control signal is raised or lowered and no variation of the gas
	flow is measured. Possible causes are: Jammed valve, changed pressure condi-
	tions or valve too small (after a change of gas). This alarm is only active if the in-
	strument is a flow controller.
5	Sensor communication error
	Raised if a communication problem occurs between the sensor and the electronic
	module. In this case the measurements are probably wrong.
6	not used
7	EEPROM access check
	Raised if access errors to the EEPROM are detected. In this case the correct func
	tion of the instrument is no longer guaranteed.
8	not used
9	not used
10	Current input overload
	Raised if current at analog input exceeds 25mA.
11	The sensor serial number does not match the loaded gas data. The valve is closed
	the actual value is set to 0.
1215	not used

Control function	0x000e	write	user
Control function	020006	read	user

Selection of the controller mode and the source of the setpoint.

Value **u16**

Value	Description
0	Automatic setpoint selection
	The source of setpoint is automatically selected, i.e.: As standard the analog
	setpoint (voltage or current signal) is active. If a digital setpoint is sent (via
	ModBus) automatically the red-y switches to 'Digital mode' and the analog
	setpoint is disabled.
1	<u>Digital setpoint</u>
	Activates the digital setpoint via digital communication. (ModBus, ProfiBus)
2	Analog setpoint (standard setting)
	Selects the analog signal as setpoint source.
10	Direct adjustment of the valve signal
	Deactivates the automatic control mode.
	Sets the valve control to the value of register 'valve control signal'
	(0x000a0x000b).
20	Setpoint 0%
	Sets the setpoint to 0%.
21	Setpoint 100%
	Sets the setpoint to 100%.
22	Valve fully closed
	Deactivates the automatic control mode.
	Sets the valve control to 0% (Valve fully closed).
23	Valve fully open
	Deactivates the automatic control mode.
	Sets the valve control signal to 100% (Valve fully open).
30	Test mode analog output
	Deactivates the automatic control mode and sets the valve control to 0%.
	Forces the analog output signal to the value in the register 'Analog output
	manual' (0x0028).
31	Test mode DAC
	Deactivates the automatic control mode and sets the valve control to 0%.
	Forces the analog output signal to the value in the register 'Analog output
	DAC' (0x0028).

Ramp	0x000F	00F write user read user	user
			user

Manual	Version		Page
red-y smart series II	smart_digi_com_E1_5	© Vögtlin Instruments AG	18

Reducing the control speed.

Controls the changing time that it takes from the current nominal value to a new nominal value

Wert u16

0: Function disabled 200.. 10000: time in ms

Device adress	0×0013	write user	user	
Device adress	0.0013	read	user	

Defines the device address with which the instrument can be addressed within a ModBus structure. Up to 247 different addresses can be assigned in a ModBus system.

Attention:

In a system, in which several devices are connected with each other via ModBus, all instruments must have different addresses. Otherwise communication errors occur and the system will no longer function.

value u16 consists of two u8

u8 (bits15..8) not used (should be forced to zero)

u8 (bits7..0) device address.

standard settings: 247

Serial number	0x001e0x001f	write	no access		
		read	user		
Clear and unique serial number of the electronic part of the measuring instrument (PCB).					
value u32					

Version number hardware	0x0020	write	no access		
version number nardware		020020	read	user	
Version number of the hardware (PCB).					
	Bit 158:	type			
Bit 74:	version				
Bit 30:	subversion				

example: 4.0.0 value **u16**

Version number software 0×0021 writeno accessreaduser

Different development stages of the software are documented with unequivocal version numbers.

Codierung:

Bit 15..8: type
Bit 7..4: version
Bit 3..0: subversion

example: 4.3.7

value **u16**

Save setpoint immediate	0x0022	write	user	
		read	user	

The setpoint value is stored in the EEPROM. This can be useful if automatic set value storage is disabled (,set value storage characteristics').

Remark:

The function ,Power-up set value' can be used to start the device with a defined set value.

value **u16**

value	meaning
0	no function
>0	Save setpoint value immediate to EEPROM

Type code 1	0x00230x0026	write	no access		
		read	user		
Name of the instrument type / instrument code.					
value s8					

Analog output manual	0x00280x0029	write	user		
		read	user		
This function lets you check the connected evaluation of the of the analog measuring value. It is possible to write and read in this register at all times. The value set in this register is first					
output via the current interface upon activation (register control mode 0x000e =30).					
value f32					

Soft reset	0**0034	write	user	
	FC00A0	read	no access	

A software reset of the measuring or control instrument takes place if any chosen value is written in this register.

Attention

The soft reset is first performed after the response to this command was returned to the master.

value u16

PID Soloct	0x0035	write	user	
PID Select		read	user	

The controller consists of altogether 5 complete control parameter sets (see the corresponding documentation). Three of these sets were defined by the manufacturer and cannot be changed by the user (so-called manufacturer control parameter sets). Two sets can be changed at wish by the user (so-called user control parameter sets).

One set is used for the current control. This setting can be saved in EEPROM and is available again with the next activation. This set can be read, changed and re-written via ModBus access. Afterwards, the controller immediately works with the modified set.

Function of the pre-defined control parameter sets:

Due to the flow end values, the correspondingly applied control valve and the pressure ratios, these sets receive different values for the parameters P, I, D, F and N. We will discuss the function of the individual parameters later on in this manual. The aim is to provide the controller with the following different properties with the three sets:

U	Fast response time with the corresponding overshooting (fast response)
٧	Medium response time with a low overshooting tendency.
W	Slow response time without overshooting (slow response)

Value u16

Auswahl	Тур
0	User control parameter set 1 (default)
1	User control parameter set 2
2	Manufacturer control parameter set U
3	Manufacturer control parameter set V
4	Manufacturer control parameter set W

Type code 2	0x10040x1007	write	no access		
		read	user		
Name of the instrument type / instrument code.					
value s8					

Power-up alarm	0×4040	write	user	
r ower-up alaitti	OFOFO	read	user	

Activation of the power-up alarm function If the alarm is deactivated, the instrument behaves according to its standard or EEPROM settings after an operational disruption or reset. The following operations are performed in case of an operational disruption or reset if the power-up alarm is activated:

- -The power-up alarm setpoint (register 0x4041..0x4042) is used as the new setpoint. The last 'normal' setpoint is overwritten in this process.
- -The power-up alarm bit is set to one in the register hardware error (0x000d).

However, these operations are only performed when the control mode (register 0x000e) is set to 1 (digital). Otherwise, only the alarm flag is set. In each case, the power-up alarm bit remains on 1 until it is explicitly deleted (see description 'Hardware errors').

value u16

Value	Description	
0	activates the power-up alarm	
1	deactivates the power-up alarm	

Power-up alarm Setpoint	0x40410x4042	write	user
		read	user

Defines the setpoint, which is to be set automatically after an operational disruption or a reset of the instrument if the power-up alarm was configured accordingly.

If this value is changed and the instrument is already in power-up alarm mode, the changed alarm setpoint first becomes effective after the next operational disruption or reset.

value f32 alarm setpoint between 0 and full scale value.

Reset hardware errors	0x404f	write	user
		read	user

Resets the alarm states of the instrument that occurred during operation. The meaning of the individual error bits are described in the register hardware errors (0x000d).

Error bits cannot be set manually as they are always a consequence of faulty operating states. If you want to reset an error bit in the register hardware error (0x000d), the corresponding bit is set here in this register (0x404f). If a bit remains on zero, the error bit is also not changed.

Value u16 (bit15..0) whereby each bit stands for a specific error to be deleted

Save mode setpoint	0x4050	write	user	
		read	user	

Specifies whether the set value is automatically stored in the E2PROM.

The service life of a EEPROM depends on the number of write cycles. The guaranteed number of write cycles is 1 million. If the set value is set every 10 minutes, the resulting service life is 19 years.

If the set value is set at significantly shorter intervals, automatic storage should be disabled.

Value u16

Value	Description
0	manual save mode
1	automatic save mode

Reverse flow detection	0x40520x4053	write	user	
		read	user	

This function allows the detection of negative mass flows. This function is intended for measuring instruments and only makes little sense in control operation. **The function has to be enabled by the manufacturer.**

Negative flows are detected and the corresponding alarm flags (0×0000) are set (with and w/o hysteresis).

Negative flows are detected and signalled with the analog signal output (with hysteresis).

In this register, you can set an alarm threshold in the range from 0% to 20% of the maximum flow Value **f32**

Signal type analog output	0x4084	write	user
		read	user

Defines the format and the range for the analog output.

Im Register (0x5500) wird definiert, ob Spannung oder Strom ausgegeben wird.

value **u16**

The following possible defaults are available:

value	signal format and range
0	020 mA / 05 V
1	420 mA / 15 V
2	420 mA / 15 V
3	020 mA / 010 V
4	420 mA / 210 V
5	user defined (Register 0x550D/0x550F, 0x5511/0x5513)

Signale type analog input	0x4085	write	user	
		read	user	

Defines the format and the range for the analog input.

Value u16

Register (0x5500) defines the output as voltage or current.

value	signal format and range
0	020 mA / 05 V
1	420 mA / 15 V
2	420 mA / 15 V
3	020 mA / 010 V
4	420 mA / 210 V
5	user defined (Register 0x5505/0x5507, 0x5509/0x550B)

Delay hardware error	0x4087	write	user	
		read	user	
Sets the minimum time in seconds during which a plausibility error has to occur constantly in				
operation before the corresponding error bit is set in the register hardware error (0x000d).				

value u16 input range: 0..600 seconds

© Vögtlin Instruments AG

LUT Select	0x4139	write	user	
		read	user	

Specifies, which gas data set is to be used.

Up to 11 different calibration data sets can be saved in the instrument. They have to be created by the manufacturer.

Anmerkung:

The first available gas data set is stored in section 2.

value u8 input range: 2..11 (Default: 2)

Measuring point	0×5000	write read	user
	0.45000		user
Tag name of the measuring point.		•	
value s50			

Baud rate	0~5200	write	user	
Baud rate	023200	read	user	

Selects the baud rate for serial communication over ModBus.

value **u16**

possible baud rates:

value	baud rate
0	300
1	600
2	1200
3	2400
4	4800
5	9600 (default)
6	19200
7	38400
8	57600

Voltage output activ	0×5500	write user	user	
vonage output activ	0.85500	read	user	

Switches the analog output format between current and voltage.

Register (0x4084) defines the active format and range.

Value **u16**

Possible settings:

value	function
0	current output format
1	voltage output format

Voltage input activ0x5504write user read user

Switches the analog input format between current and voltage.

Register (0x4085) defines the active format and range.

Value **u16**

Possible settings:

value	function
0	current input format
1	voltage input format

Customer specific current input low 0×5505 write user read user

Defines the lower value for the user defined current input range.

The value must be between 0 [mA] and the upper Value (0x5507).

value f32

Customer specific current input high 0×5507 write user

Defines the higher value for the user defined current input range.

The value must be between the lower value (0×5505) and 20 [mA].

value f32

Customer specific voltage input low	0×5509	write	user			
	02303	read user	user			
Defines the lower value for the user defined voltage input range.						
The value must be between 0 [V] and the u	upper value (0x550	в).				
value f32						

Customer specific voltage input high $0 \times 550B$ write read userDefines the higher value for the user defined voltage input range.The value must be between the lower value (0×5509) and 10 [V].

Manual Version Page

value f32

Customer specific current ouput low $0 \times 550D$ write read userDefines the lower value for the user defined current output range.The value must be between 0 [mA] and the upper value $(0 \times 550F)$.value f32

Customer specific current output high $0 \times 550 F$ write read userDefines the higher value for the user defined current output range.The value must be between the lower value $(0 \times 550 D)$ and 20 [mA].value f32

LUT Access	0×5FFF	write read	user	
	UAJIII		user	
Sets the data pointer to the required data set for read/write operations.				
The data pointer has no effect on the function of the instrument				
The data pointer has no effect on the function of the instrument.				
value u8 input range 211				

	06000 06001	write	no access
LUT ID	0x60000x6001	read	user
Unique identifier of the gas table. Th	is value is a time stamp from	n lookup	calculation.
value u32			
Measuring range	0x60200x6021	write	no access
woodding range	01100200110021	read	user
Range of the selected gas data set.			
value f32			
Name of fluid (long)	0x60220x603A	write	user
		read	user
Long Name of the selected gas data	set.		
value s50			
Name of fluid	0x60420x6045	write	no access
		read	user
Name of the colouted and date and			
value s8		write	no access
Name of the selected gas data set. value s8 Measuring unit	0x60460x6049	write	no access user
value s8			
value s8 Measuring unit			
value s8 Measuring unit Measuring unit of the selected gas d			
value s8 Measuring unit Measuring unit of the selected gas d value s8	ata set.		
value s8 Measuring unit Measuring unit of the selected gas d		read	user

Heat power	0×6121	write	no access		
	0X0121	read	user		
Heat power on the sensor.					
value u16					

Dynamic	0∀6122	write	no access
Dynamic	UXUIZZ	read	user

Dynamic of the measuring range. The measuring range is limited by the dynamic. The smallest measuring value is calculated by:

$$Value = \frac{Range}{Dynamic}$$

value u16

Cutoff	Nv6123 Nv6124	write	user	
Galon	020123020124	read	user	

This register can be used to suppress the measured mass flow downwards. If the measured value is smaller than the value set here, the output is zero instead of the measurement reading.

The measured value is additionally limited through the dynamics of the measuring range. value **f32**, default 0

Control parameter K _D	0x62020x6203	write	user	
Control parameter N _D	02020202	read	user	
Differential-part of the PID loop.				
value f32				
The value must be in the range of 010'000				

Control parameter K _P	0v6201 0v6205	write user	user
Control parameter N _P	0.00.0400.005	read	user

Proportional-part of the PID loop.

value f32

The value must be in the range of 0..10'000

Control parameter K _I	0×62060×6207	write	user	
Control parameter N	02000207	read	user	
Integral-part of the PID loop.				
value f32				
The value must be in the range of 010'000				

Control parameter N	0x6208	write	user
Control parameter N	020200	read	user

Non-linear part of the PID loop. This value compensates the bounce of the valve.

Notification:

This compensation only takes place with a setpoint value larger than zero.

value u16

The value must be in the range of 0..8'000

Totaliser 1	Ny638N Ny6381	write	user
Totaliser 1	0.00000000001	read	user

Total amount of gas flow since last reset.

Any value can be written in this register. The totaliser then starts from this value.

Notification:

The totalizer value is stored in the EEPROM every 10 minutes. In the event of a voltage interruption adding up continues from the last stored value.

value f32

Totaliser 2 (not resettable)	0×63820×6383	write	no access	
Totaliser 2 (Hot resettable)	0X63820X6383 read	read	user	
Total amount of gas flow, not resettable.				
value f32				

Fotaliser scaling factor	N∀6384 N∀6385	write	no access	
Totaliser scaling factor	0.0000100000	read	user	

The totalizer assumes that the measured value unit has a time base of 1/min. The totalizer can be re-scaled to any unit via a scaling factor.

$$M_{\textit{Totaliser[y]}} = F_{\textit{Factor}} * M_{\textit{Totaliser[x/min]}}$$

Legende: M_{Totaliser[y]}: Added up gas quantity converted via the associated scaling factor

 F_{Factor} : Scaling factor (definition see totalizer sum scaling factor register) $M_{Totaliser[x/min]}$: Gas quantity totalizer value relative to time base 1/min

In this way it is possible to select any unit for the totalizer sum.

Example:

The device measures flow with the unit ,ln/min'. With a scaling factor of 1 shows the totalizer shows ,ln'.

Value f32

Default 1

Totaliser unit	0x63860x6389	write	no access
rotanser arm	0.00000.000000	read	user
Unit of the totaliser value.			
value s8			

Analogfilter at Setpoint	∩ ∨ 5515		no access
Analogiliter at Setpoint	023313	_	user

An analog filter can be activated upstream to the setpoint. This filter permits to reduce the random noise on the analog interface or to calm down the signals of an external pressure transducer.

0 < Value < 25

0 = off

15 = middle

25 = strong

Default: 0

Value unit 8

ProfiKeepLastValue	0x5943	write	no access
		read	user

Properties of Profibus when communication fails

Value: 1 | 0

- 1: The last given setpoint will be applied also after failing of profibus communication.
- 0: When communication fails, the setpoint of the register ProfiSetDefault will be applied.

Default: 0

Value unit 8

ProfiSetDefault	0v5944 0v5945	write	no access
Tronseiberaun	0.00044000040	read	user

Properties of Profibus when ProfiKeepLastValue.

0 <= Setpoint <= 100 %

- 1: The last given setpoint will be applied also after failing of profibus communication.
- 0: When communication fails, the setpoint of the register ProfiSetDefault will be applied.

Default: 0 %

Value unit 8

1.16 Different Memories

The controller has three different memories respectively data sources.

⇒ EEPROM (configuration data, etc.)
 ⇒ RAM (measuring values, etc.)
 ⇒ ROM (fix-coded data, firmware)

Saving Data in non-volatile-memory

Certain register contents are saved in the non-volatile memory (EEPROM). They are written to the memory, if data value changes.

Since the number of write accesses to an EEPROM is limited, continuous writing of values may shorten the lifetime of the EEPROM.

Example:

With a write cycle of 1 s an EEPROM with a typical service life of 1 million write cycles would have an expected lifetime of 11.5 days.

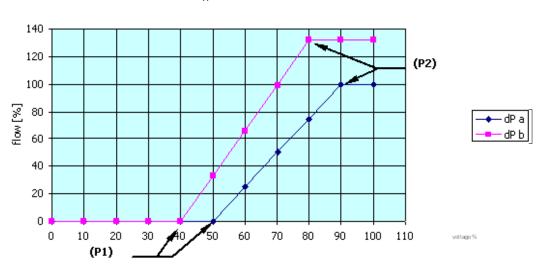
Note:

The set value is excluded from this rule. The ,set value storage characteristics' register (0×4050) can be used to define whether a change in value is stored in the EEPROM.

1.17 Controller characteristic

Controller structure

The controller consists of a linear and a non-linear part. The linear part of the controller consist of the following components:


- ⇒ Proportional part K_P
- □ Integral part K_I
- ⇒ Differential part K_D

The non-linear part is:

⇒ Non-linearity (N)

Valve characteristics curve

In its work range, the valve characteristics curve has almost linear characteristics. Here, the valve does not use the entire adjustment value range from 0% to 100%. The operating points P_1 (opening point) and P_2 (max. possible flow) depend on the inlet pressure and the pressure difference across the valve (dP a < dP b).

Typical valve characteristic

Function of the individual parameters

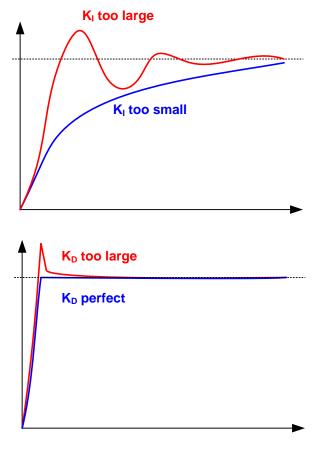
Non-linearity N

The parameter non-linearity N compensates the dead zone in the area 0% to DA%. This compensation only takes place with a setpoint default larger than zero. With setpoint defaults larger than zero, a value generated by N is added to the controlling signal generated by the linear control algorithm. Naturally, the value N may never be larger or equal the value P1.

1.18 Controller setting

We recommend setting the individual controller parameters as follows:

- 1. Control parameter N
- 2. Control parameter K_P
- 3. Control parameter K_I
- 4. Control parameter K_D


Setting control parameter N

- 1. Connect the controller electrically (warm-up time) and establish the operating conditions (pressure ratios) as far as possible.
- 2. The ,get red-y' software provides access to control parameter sets A and B.
- 3. Set the control parameters to the following values: $K_P = 0$; $K_I = 0$; $K_D = 0$; N = 0
- 4. Set the set value to 5% of the end value.
- 5. Increase parameter N in steps of 100 until flow occurs.
- 6. Set N to 80% of the value found in this way. N remains the same for all sets.

Setting control parameter KP

- 1. Set KP to 3000.
- 2. Set KI to 600.
- 3. Set KD to 200.

The control characteristics are assessed through different set value variations.

2. Digital Communication ProfiBus

This document describes device data access via ProfiBus communication. The detailed function of the individual registers is described in section ,Digital Communication ModBus'.

Cyclical communication DP-V0

Information is exchanged between the master and the slaves in a predefined message cycle. The scope of the information is configured in advance (offline) with a software tool. To this end functionality information is required for all devices.

Note

Cyclical data are NOT stored in the EEPROM (from firmware 4.3.8). After a power failure other parameters may be active until cyclical data traffic has been re-established.

Device master data file (GSD)

The GSD is the mandatory ,identity card' of a ProfiBus device. It contains the device characteristic data, information about its communication capability, and additional information about diagnostic values, for example.

For cyclical exchange of measurement readings and control variables between field devices and the automation system the GSD is sufficient for device integration.

Acyclical communication DP-V1

Field devices are becoming increasingly complex and can be configured for different situations. This information is exchanged in parallel with the cyclical communication as required. The data exchange is triggered by the master during runtime.

Note

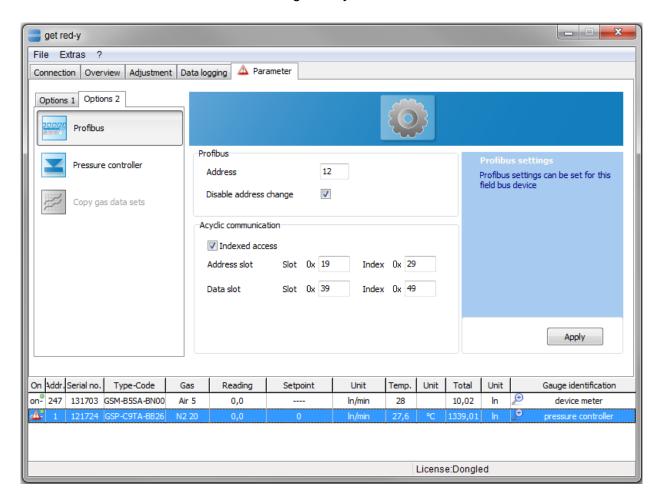
Acyclical data are stored in the EEPROM. A distinction is made between data that are stored with each write access (i) or only in the event of a change (c).

Indexed addressing

Due to the large number of parameters, different control systems may not be able to address all parameters. Indexed addressing was therefore realized.

These can be activated in ,get red-y', so that an address slot and a data slot is available. Both are allocated to a slot/index. In order to communicate with the device, the address slot with the required slot/index must be used for write access. The address slot expects a value in format u16. The high-order byte refers to the slot, the low-order byte to the index.

The write or read operation is then carried out in the data slot. The parameter format can be found in the table on page 45.



Note

If indexed addressing is activated, only the address and data slot is accessible for acyclical communication.

2.10 Definition of address and data slot

The address and data slots are defined in *get red-y*:

The slot can be in the range $0 \times 00 \dots 0 \times FF$, the index in range $0 \times 00 \dots 0 \times FE$.

Control systems

The implementation of acyclical communication may differ depending on the control system. The manufacturer of the respective control system should provide associated instructions.

Siemens S7

Acyclical communication is handled via the following modules:

⇒ SFB 52 RDREC read data record⇒ SFB 53 WRREC write data record

The description can be found in the associated documentation.

2.11 Register

Daty types

The register documentation refers to the following data types:

Datentyp	Format	Description	Length [Bytes]
float32	f32	floating point, according to IEEE-754	4
string8	s8	sequence of symbols, null-terminated	8
string50	s50	sequence of symbols, null-terminated	50
uint8	u8	unsigned integer, 8 bits	1
uint16	u16	unsigned integer, 16 bits	2
uint32	u32	unsigned integer, 32 bits	4

Addresses

The following table lists the data that are accessible via ProfiBus.

Mode

Different memory characteristics are defined for write access:

- r read only (parameter can only be read)
- s special (set value is handled separately via register 4050)
- i immediate (value is stored in the EEPROM with each write access)
- c changed (value is stored in the EEPROM whenever there is a change)
- (value is not stored in the EEPROM)

Register			ProfiBus cyclic		Profi	Bus a	cyclic	;
Description	Address [hex]	Format	Module	Read [hex] Write [hex]	Mode	Slot [hex]	Index [hex]	Length [dez]
Gas flow	0000	f32	Flow Rd	43 83 00 00 00	r	00	00	4
Temperature	0002	f32	Temperature Rd	43 83 00 00 02	r	00	02	4
Setpoint gas flow	0006	f32	Setpoint Rd Setpoint Wr	43 83 00 00 06 83 83 00 00 06	S	00	06	4
Analog input	8000	f32	Analog Input Rd	43 83 00 00 08	r	00	08	4
Valve control signal	000A	f32	PWM Signal Rd PWM Signal Wr	43 83 00 00 0A 83 83 00 00 0A	i	00	0A	4
Alarms	000C	u16	Alarm Info Rd	43 81 00 00 0C	r	00	0C	2
Hardware errors	000D	u16	HW Error Rd	43 81 00 00 0D 	r	00	0D	2
Control function	000E	u16	Control Mode Rd Control Mode Wr	43 81 00 00 0E 83 81 00 00 0E	С	00	0E	2
Device adress	0013	u16			i	00	13	2
Serial number	001E	u32	SerialNumber Rd	43 83 00 00 1E 	i	00	1E	4
Version number hard- ware	0020	u16			r	00	20	2

Register		ProfiBus cyclic		ProfiBus acyclic				
Description	Address	Format	Module	Read [hex]	Mode	Slot	Index	Length
\/	[hex] 0021	u16	SW Version Rd	Write [hex] 43 81 00 00 21	r	[hex]	[hex]	[dez]
Version number soft- ware	0021	uio			'	00	21	2
Save setpoint immediate	0022	u16			-	00	22	2
Type code 1	0023	s8	DeviceTypeCode1 Rd	43 87 00 00 23	i	00	23	8
Analog output manual	0028	f32			i	00	28	4
Soft reset	0034	u16			-	00	34	2
PID Select	0035	u16	PID Select Rd PID Select Wr	43 81 00 00 35 83 81 00 00 35	С	00	35	2
Type code 2	1004	s8	DeviceTypeCode2 Rd	43 87 00 10 04	i	10	04	8
Power-up alarm	4040	u16			i	40	40	2
Power-up alarm Setpoint	4041	f32			i	40	41	4
Reset hardware errors	404F	u16	 HW Error Reset Wr	 83 81 00 40 4F	-	40	4F	2
Save mode setpoint	4050	u16			i	40	50	2
Reverse flow detection	4052	f32			i	40	52	4
Signal type analog output	4084	u16			i	40	84	2
Signale type analog input	4085	u16			i	40	85	2
Delay hardware error	4087	u16			i	40	87	2
LUT Select	4139	u8	Lut Select Rd Lut Select Wr	43 80 00 41 39 83 80 00 41 39	С	41	39	1
Measuring point	5000	s50	Tag Name Rd	43 B1 00 50 00	i	50	00	50
Voltage output activ	5500	u16			i	55	00	2
Voltage input activ	5504	u16			i	55	04	2
PID Access	5FF7	u16			С	5F	F7	2
LUT Access	5FFF	u8	Lut Access Rd Lut Access Wr	43 80 00 DF 00 83 80 00 DF 00	С	DF	00	1
LUT ID	6000	u32			i	60	00	4
Measuring range	6020	f32	Flow Range Rd	43 83 00 60 20	i	60	20	4
Name of fluid (long)	6022	s50	Gasname Rd	43 B1 00 60 22	i	60	22	50
Name of fluid	6042	s8	Gas Rd	43 87 00 60 42	i	60	42	8
Measuring unit	6046	s8	FlowUnit Rd	43 87 00 60 46	i	60	46	8

Register			ProfiBus cyclic		Profi	iBus a	cyclic	;
Description	Address [hex]	Format	Module	Read [hex] Write [hex]	Mode	Slot [hex]	Index [hex]	Length [dez]
Gain	6120	u16			i	61	20	2
Heat power	6121	u16			i	61	21	2
Dynamic	6122	u16			i	61	22	2
Cutoff	6123	f32			i	61	23	4
Control parameter K _D	6202	f32			i	62	02	4
Control parameter K _P	6204	f32			i	62	04	4
,								
Control parameter K _l	6206	f32			i	62	06	4
,								
Control parameter N	6208	u16			i	62	08	2
,								
Totaliser 1	6380	f32	Totalisator Rd	43 83 00 63 80	i	63	80	4
Totaliser 2	6382	f32	TotalisatorN Rd	43 83 00 63 82	i	63	82	4
Totaliser scaling factor	6384	f32			i	63	84	4
Ŭ								
Totaliser unit	6386	s8	TotalisatorUnit Rd	43 87 00 63 86	i	63	86	8

3. Pressure controller GSP/GSB / ModBus

3.10 Number formats

	Data type	For- mat	Description		Length [Bytes]
float32				Floating point number according to IEEE-754	
	string8			8-character string	
	string50			50-character string	
	uint8			Unsigned whole number, 8 bits	
	uint16			Unsigned whole number, 16 bits	
	uint32			Unsigned whole number, 32 bits	

3.11 Parameter overview

Descrip tion	Description	Registers	ModBus
Control mode	Selection / characteristic of the controller	0x000e	000e
Pressure – Flow Control (V 6.0.11)	Easy switch between flow to pressure controller or vice versa	0x0038	0038
Nominal pressure value at power-up (V 6.0.12)		0x4044	4044
Meas- ured value, pressure	Measured value of the gas pressure	0x5f000x5f01	5f00
Scaling	Min. value, pressure transformer	0x5f020x5f03	5f02

pres- sure, min.	measurement range		
Scaling pres- sure, max.	Max. value, pressure transformer measurement range	0x5f040x5f05	5f04
Pres- sure setpoint	Setpoint presetting for pressure control	0x5f060x5f07	5f06
Pres- sure unit	Measurement unit, pressure trans- former	0x5f080x5f0b	5f08
Flow limiting	Flow limiting during pressure control	0x5f0c0x5f0d	5f0c
Pres- sure control mode	Selection of setpoint presetting	0x5f0e	5f0e
Pres- sure control operat- ing mode	Selection of function and options	0x5f0f	5f0f
PID Se- lect Pres- sure	Selection of the control parameter set	0x5f10	5f10
PID Ac- cess Pres- sure	Data pointer control set	0x5f1f	5f1f
Control parame- ter K _P	Control parameter amplification factor	0x5f200x5f21	5f20
Control parame- ter K _l	Control parameter I-share	0x5f220x5f23	5f22

Control parame- ter K _D	Control parameter D-share	0x5f240x5f25	5f24
Tag Name Pres- sure	Measuring point tag, pressure transformer	0x5f270x5f3f	5f27
Analog filter setpoint	Measuring point tag, pressure transformer	0x5515	5515

3.12 Detailed explanation of individual parameters

Control mode		Write		User			
		0x000e	Read	User			
addition ere.	al options are defined for pres	sure control. Only thes	se additiona	I functions are descri			
alue u16)						
Value	Significance						
5	Pressure control active						
	The pressure is controlled valve). If the actual value i vided the direction of flow	s greater than the set	•				
	If acting in this way it is als	,	reducer'.				
6	If acting in this way it is als Back pressure control acti	so known as 'pressure	reducer'.				

ressure- Flow control		0x0038	Write	User		
		0x0036	Read	User		
Eas	y switch betwe	en flow to pressure	controller or vice versa			
Wert	Bedeutung	edeutung				
0 Flow automatic, not recommended.						
	Flow setpoint	must be transmitte	d after this command			
1	digital Setpoi	nt				
2	Analogue Se	tpoint				
5		Pressure control a	<u>ictive</u>			
	valve). If the a	actual value is greated actual value is direction of flow is	am from the process (der than the setpoint, the 'Normal'). Vormal').	e valve is closed		
6		Back pressure cor	ntrol active			
The pressure is controlled downstream from the process (upstream fro control valve). If the actual value is greater than the setpoint, the valve opened (provided the direction of flow is 'Normal').						
	In this case it is also known as an 'overflow valve'.					
ert u16 (1,2 or 5,6)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Measured value, pressure	0x5f000x5f01	Write	No access			
incasarea variae, pressure	0.000.000101	Read	User			
Currently measured gas pressure.						
Value f32						

Scaling pressure, min.	0x5f020x5f03	Write	User				
Scaling pressure, min.	083102083103	Read	User				
Lower value of the pressure transformer measurement range This value is required to scale the							
analog signal of the pressure transformer to the correct value range.							
Value f32							

Scaling pressure, max.	0x5f040x5f05	Write	User		
		Read	User		
Upper value of the pressure transformer measurement range. This value is required to scale the					
analog signal of the pressure transformer to the correct value range.					
Value f32					

Pressure setpoint	0x5f060x5f07	Write	User		
		Read	User		
Setpoint presetting for pressure control					
Value f32					

Manual Version Page © Vögtlin Instruments AG

Pressure unit	0x5f080x5f0b	Write	User		
		Read	User		
Character string of the measured value unit of the pressure transformer.					
Value s8					

Flow limiting	0x5f0c0x5f0d	Write	User		
		Read	User		
When flow limiting is activated, the flow is limited to this value while the pressure is controlled.					
Flow limiting is activated in the register (0x5f0f).					
Value f32					

Duagassus	ssure control mode	0 [50 -	Write	User		
Pressure (control mode	0x5f0e	Read	User		
Selects th	e source for the setpoint prese	tting.	i			
Value u16	<u> </u>					
The follow	ring possible presettings are av	ailable:				
Value	Significance					
0	Automatic, the analog setpoint presetting is activated unless a digital setpoint is transmitted.					
1	Digital setpoint presetting: point is written to the regist	• .	s for the mea	asured value, the set-		
2	Analog setpoint presetting: the analog input waits for the setpoint, the measured value is written to the register (0×5±00)					

D		0 5 5 0 5	Write	User
Pressure control operating mode		0x5f0f	Read	User
Selects fur	nctions and options for pressu	ire control. This entails	s setting the	corresponding bit.
Value u16				
The followi	ng possible presettings are a	vailable:		
bit	Significance			

0	Flow limiting active	
1	Direction of flow for pressure control inverted	

Analog filter setpoint	0 \$ 5 5 1 5	Write	No access
Analog liner setpoliti	023313	Read	User

A filter can be connected upstream from the analog signal setpoint.

The filter enables reduction of the noise at the analog supply line or suppression of the sensitive characteristic of a pressure gauge.

0 < value < 25

0 = off

15 = medium

25 = strong

Default: 0

Value uint8

PID Select Pressure		0×5f10	Write	User
FID Selec	l Flessule	UXJIIU	Read	User
There are	5 control parameter sets in to	tal. The corresponding	parameter	set is selected here.
Value u16	<u> </u>			
The follow	ring possible presettings are a	vailable:		
Value	Significance			
0	Control parameter set 0			
1	Control parameter set 1			
2	Control parameter set 2			
3	Control parameter set 3			
4	Control parameter set 4			

DID Acces	ss Pressure	vre 0x5f1f		User
PID Acces	ss Pressure	UXSIII	Read	User
This is a d	ata pointer. It defines the cont	rol value set from whi	ch the value	es are displayed or writ-
ten.				
Value u16				
The follow	ing possible presettings are a	vailable:		
Value	Significance			
0	Control parameter set 0			
1	Control parameter set 1			
2	Control parameter set 2			
3	Control parameter set 3			
4	Control parameter set 4			

Control parameter K _P	0x5f200x5f21	Write	User		
		Read	User		
Proportional share of the control loop					
Value f32					

Control parameter K _I	0x5f220x5f23	Write	User			
		Read	User			
Integral share of the control loop						
Value f32						

Control parameter K _D	0x5f240x5f25	Write	User				
	023124023123	Read	User				
Differential share of the control loop							
Value f32							

Control parameter N	0×5f26	Write	User				
		Read	User				
This parameter is not used at present.							
Value u16							

Tag Name Pressure	0x5f270x5f3f	Write	User				
	0.0000000000000000000000000000000000000	Read	User				
Measuring point tag, pressure transformer							
Value s50							

4. Pressure Controller GSP/GSB / ProfiBus

This chapter describes only additional registers for pressure control.

4.10 Register

Data types

The register documentation refers to the following data types:

Data typ	Format	Description	Length [Bytes]
float32	f32	Floating point number according to IEEE-754	4
string8	s8	8-character string	8
string50	s50	50-character string	50
uint8	u8	Unsigned whole number, 8 bits	1
uint16	u16	Unsigned whole number, 16 bits	2
uint32	u32	Unsigned whole number, 32 bits	4

Addresses

The following table lists the data that are accessible via Profibus.

Mode

Different memory characteristics are defined for write access:

- r read only (parameter can only be read)
- s special (set value is handled separately via register 4050)
- i immediate (value is stored in the EEPROM with each write access)
- c changed (value is stored in the EEPROM whenever there is a change)
- (value is not stored in the EEPROM)

Registers			Profibus, cyclical			Profibus, acyclical			
Description	Address [hex]	Format	Module	Read [hex] Write [hex]	Mode	Slot [hex]	Index [hex]	Length [dec]	
Measured value, pressure	5F00	f32	Pressure Rd	43 83 00 5F 00 	r	5F	00	4	
Scaling pressure, min.	5F02	f32			i	5F	02	4	
Scaling pressure, max.	5F04	f32			i	5F	04	4	
Pressure setpoint	5F06	f32	Setpoint Rd Setpoint Wr	43 83 00 5F 06 83 83 00 5F 06	S	5F	06	4	
Pressure unit	5F08	s8	Pressure Unit Rd	43 87 00 5F 08 83 87 00 5F 08	i	5F	08	8	
Flow limiting	5F0C	f32			i	5F	0C	4	
Pressure control mode	5F0E	u16			С	5F	0E	2	

Registers			Profibus, cyclical		Profi	Profibus, acyclical			
Description	Address [hex]	Format	Module	Read [hex] Write [hex]	Mode	Slot [hex]	Index [hex]	Length [dec]	
Pressure – Flow Control (1,2 or 5,6)	0038	u16			С	00	38	2	
Pressure control operating mode	5F0F	u16			С	5F	0F	2	
PID Select Pressure	5F10	u16			С	5F	10	2	
PID Access Pressure	5F1F	u16			С	5F	1F	2	
Control parameter K _P	5F20	f32			i	5F	20	4	
Control parameter K _I	5F22	f32			i	5F	22	4	
Control parameter K _D	5F24	f32			i	5F	24	4	
Control parameter N	5F26	u16			i	5f	26	2	

5. Change history

Date	Version	Replaces	Author	Note
04.01.2013	smart_dgi_com_E1_5	smart_dgi_com_E1_4	MRZ	Funktionen
				Power On Pressure Flow – Pressure Controller Flashing LED off
06.02.2012	Smart_digi_com_E1_4	Smart_digi_com_E1_3	MRZ	Function Control Delay RAMP
22.03.2011	Smart_digi_com_E1_3	smart_digi_com_E1_2	FWA	Final Corrigenda
16.01.2011	smart_digi_com_E1_2	-	MHU	New english version